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Abstract

This paper describes the use of AI planning tech-
niques to represent scientific, image processing, and
software tool knowledge to automate knowledge
discovery and data mining (e.g., science data anal-
ysis) of large image databases. In particular, we
describe two fielded systems. The Multimission
VICAR Planner (MVP) which has been deployed
for 2 years and is currently supporting science prod-
uct generation for the Galileo mission. MVP has
reduced time to fill certain classes of requests from
4 hours to 15 minutes. The Automated SAR Im-
age Processing system (ASIP) which is currently in
use by the Dept. of Geology at ASU supporting
aeolian science analysis of synthetic aperture radar
images. ASIP reduces the number of manual inputs
in science product generation by 10-fold.

Introduction
Recent breakthroughs in imaging technology have led to
an explosion of available data in image format. How-
ever, these advances in imaging technology have brought
with them a commensurate increase in the complexity of
image processing and analysis technology. When ana-
lyzing newly available image data to discover patterns
or to confirm scientific theories, a complex set of oper-
ations is often required. First, before the data can be
used it must often be reformatted, cleaned, and many
correction steps must be applied. Then, in order to per-
form the actual data analysis, the user must manage all
of the analysis software packages and their requirements
on format, required information, etc.

0This paper describes research conducted by the Jet Propul-
sion Laboratory, California Institute of Technology, under con-
tract with the National Aeronautics and Space Administration.
Other MVP team members include: Todd Turco, Christine
Ying, Shouyi Hsiao, Darren Mutz, Alex Gray, Joe Nieten,
and Jean Lorre. Other ASIP contributors include: Dan Blum-
berg(ASU), Anita Govindjee, John McHone(ASU), Keld Ras-
mussen(ASU), and Todd Turco.
Appears in the Proceeding of the 1997 Conference on Knowl-
edge Discovery and Data Mining, Newport Beach, CA, 1997,
AAAI Press. Copyright 1997, American Association for Arti-
ficial Intelligence (www.aaai.org). All Rights Reserved.

Furthermore, this data analysis process is not a one-
shot process. Typically a scientist will set up some sort
of analysis, study the results, and then use the results of
this analysis to modify the analysis to improve it. This
analysis and refinement cycle may occur many times -
thus any reduction in the scientist effort or cycle time
can dramatically improve scientist productivity.

Unfortunately, this data preparation and analysis pro-
cess is both knowledge and labor intensive. Consider the
task of producing a mosaic of images of the moon from
the Galileo mission (corrected for lighting, transmission
errors, and camera distortions). Consider also that our
end goal is to perform geological analyses - i.e., to study
the composition of the surface materials on the moon.
One technique used to do this is to construct a ratio im-
age - an image whose values are the ratio of the intensity
of the response at two different bandwidths (e.g., the ra-
tio of infra-red response and visible green response). In
order to correctly be able to produce this science prod-
uct for analysis, requires knowledge of a wide range of
sources including:
� the particular science discipline of interest (e.g., at-

mospheric science, planetary geology),

� image processing and the image processing libraries
available,

� where and how the images and associated information
are stored (e.g., calibration files), and

� the overall image processing environment to know
how to link together libraries and pass information
from one program to another.
It takes many years of training and experience to ac-

quire the knowledge necessary to perform these analy-
ses. Needless to say, these experts are in high demand.
One factor which exacerbates this shortage of experts is
the extreme breadth of knowledge required. Many users
might be knowledgable in one or more of the above areas
but not in all the areas. In addition, the status quo re-
quires that users possess considerable knowledge about
software infrastructure. Users must know how to spec-
ify input parameters (format, type, and options) for each
software package that they are using and must often ex-
pend considerable effort in translating information from
one package to another.



Using automated planning technology to represent and
automate many of these data analysis functions enables
novice users to utilize the software libraries to mine the
data (p. 50 (Fayyad96)). It also allows users who may
be expert in some areas but less knowledgable in other
to use the software tools to mine the data.

The remainder of this article is organized as follows.
First, we provide a brief overview of the key elements
of AI planning. We then describe two fielded planning
systems for science data analysis. We describe the MVP
system - which automates elements of image process-
ing for science data analysis for data from the Galileo
mission. We then describe the ASIP system - which au-
tomates elements of image processing for science data
analysis of synthetic aperture radar (SAR) images.

The principle contributions of this article are twofold.
First, we identify software tool reconfiguration as an area
where AI planning technology can significantly extend
KDD capabilities. Second, we describe two systems
demonstrating the viability and impact of AI planning
on the KDD process.

Artificial Intelligence Planning Techniques
We have applied and extended techniques from Artificial
Intelligence Planning to address the knowledge-based
software reconfiguration problem in general, and two
applications in science data analysis (e.g., data mining)
in specific. In order to describe this work, we first pro-
vide a brief overview of the key concepts from planning
technology 1.

Planning technology relies on an encoding of possible
actions in the domain. In this encoding, one specifies
for each action in the domain: preconditions, postcondi-
tions, and subactivities. Preconditions are requirements
which must be met before the action can be taken. These
may be pieces of information which are required to cor-
rectly apply a software package (such as the image for-
mat, availability of calibration data, etc. Postconditions
are things that are made true by the execution of the
actions, such as the fact that the data has been photo-
metrically corrected (corrected for the relative location
of the lighting source) or that 3-dimensional topography
information has been extracted from an image. Substeps
are lower level activities which comprise the higher level
activity. Given this encoding of actions, a planner is able
to solve individual problems, where each problem is a
current state and a set of goals. The planner uses its
action models to synthesize a plan (a set of actions) to
achieve the goals from the current state.

Planning consists of three main mechanisms: sub-
goaling, task decomposition, and conflict analysis. In
subgoaling, a planner ensures that all of the precondi-
tions of actions in the plan are met. This can be done by
ensuring that they are true in the initial state or by adding
appropriate actions to the plan. In task decomposition,

1For Further details on planning the user is referred to (Pem-
berthy92; Erol94)

the planner ensures that all high level (abstract) activi-
ties are expanded so that the lower level (subactivities)
are present in the plan. This ensures that the plan con-
sists of executable activities. Conflict analysis ensures
that different portions of the plan do not interfere with
eachother.

The Multimission VICAR Planner (MVP)
MVP (Chien96) partially automates generation of im-
age processing procedures from user requests and a
knowledge-based model of VICAR image processing
area using Artificial Intelligence (AI) automated plan-
ning techniques. In VICAR image processing, the ac-
tions are VICAR image processing programs, the current
state is the current state of the image files of interest, and
the specification of the desired state corresponds to the
user image processing goals.

The VICAR environment (Video Image Communica-
tion and Retrieval 2 ) (LaVoie89) supports image process-
ing for: JPL flight projects including VOYAGER, MAG-
ELLAN, and GALILEO, and CASSINI; other space
imaging missions such as SIR-C and LANDSAT; and
numerous other applications including astronomy, earth
resources, land use, biomedicine, and forensics with a
total of over 100 users. VICAR allows individual pro-
cessing steps (programs) to be combined into more com-
plex image processing scripts called procedure definition
files (PDFs). The primary purpose of VICAR is for en-
coding PDFs for science analysis of image data from
JPL missions.

An Example of MVP Usage
In order to illustrate how MVP assists in VICAR plane-
tary image processing,we now provide a typical example
of MVP usage to ground the problem and the inputs and
outputs required by MVP. The three images, shown at
the left of Figure 1 are of the planet Earth taken during
the Galileo Earth 2 flyby in December 1992. However,
many corrections and processing steps must be applied
before the images can be used. First, errors in the com-
pression and transmission of the data from the Galileo
spacecraft to receivers on Earth has resulted in miss-
ing and noisy lines in the images. Line fillin and spike
removals are therefore desirable. Second, the images
should be map projected to correct for the spatial dis-
tortion that occurs when a spherical body is represented
on a flat surface. Third, in order to combine the images,
we need to compute common points between the images
and overlay them appropriately. Fourth, because we are
combining multiple images taken with different camera
states, the images should be radiometrically corrected
before combination.

MVP enables the user to input image processing goals
through a graphical user interface with most goals as
toggle buttons on the interface. A few options require

2This name is somewhat misleading as VICAR is used to
process considerable non-video image data such as MAGEL-
LAN synthetic aperture radar (SAR) data.



Figure 1: Raw and Processed Image Files

entering some text, usually function parameters that will
be included as literals in the appropriate place in the
generated VICAR script. Figure 2 shows the processing
goals input to MVP. Using the image processing goals

radiometric correction pixel spike removal
missing line fillin uneven bit weight correction
no limbs present in images perform automatic navigation
display automatic nav residual error perform manual navigation
display man nav residual error map project with parameters ...
mosaic images smooth mosaic seams using DN

Figure 2: Example Problem Goals

and its model of image processing procedures, MVP
constructs a plan of image processing steps to achieve
the requested goal. Figure 3 shows the plan structure for
a portion of the overall image processing plan.

In this graph, nodes represent image processing ac-
tions (programs) and required image states to achieve
the larger image processing goal. This plan is translated
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Figure 3: Subgoal Graph for Manual Relative Navigation
of Galileo Image Files

IBISNAV OUT="file_list.NAV" PLANET=target_0_10  + 
   PROJECT="GLL  " SEDR=@RIMSRC FILENAME="file_list.ilist"

!! Construct initial overlap pairs MOSPLOT
MOSPLOT inp="file_list.NAV" nl=lines_0_6 ns=samples_0_6 project="GLL  "
! mos.overlap is just a holder for the overlap plot.
dcl copy printronx.plt mos.overlap 
dcl print/nofeed mos.overlap

!! Refine initial overlap pairs edibis
EDIBIS INP="file_list.OVER"

!! Manmatch mosaic file list
!! If there is no existing tiepoint file.....
!! Check if a tiepoint file exists.

!! The following code is in written VMS
!! LOCAL STR STRING INIT = ""
LET _ONFAIL = "CONTINUE" !! Allow the pdf to continue
                           !! if a file is not found.
DCL DEASSIGN NAME
DCL DEFINE NAME 'F$SEARCH("file_list.TP")
LOCAL STR STRING
TRANSLOG NAME STR
LET _ONFAIL = "RETURN" !! Set PDF to return on error

IF (STR = "")
   MANMATCH INP=("file_list.NAV","file_list.OVER") + 
      OUT="file_list.TP" PROJECT="GLL  " 'SEDR FILENAME="file_list.ILIST"

!! If an old tiepoint file exists...
!! The old tpfile is part of input and later overwritten.
ELSE
   MANMATCH INP=("file_list.NAV","file_list.OVER","file_list.TP") + 
      OUT="file_list.TP" PROJECT="GLL  " 'SEDR FILENAME="file_list.ILIST"

!! OMCOR2
OMCOR2 INP=("file_list.NAV","file_list.TP") PROJECT="GLL  " GROUND=@GOOD
OMCOR2 INP=("file_list.NAV","file_list.TP") PROJECT="GLL  " GROUND=@GOOD
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Conceptual Steps VICAR Code

Figure 4: Sample VICAR Code Fragment

into a VICAR script which, when run, performs the
desired image corrections and constructs a mosaicked
image of the three input files. Figure 4 shows tha MVP-
generated VICAR code corresponding to this subplan
which performs image navigation 3 for a Galileo image.
The finished result of the image processing task is shown
at the right in Figure 1. The three original images now
appear as a single mosaicked image, map projected with
missing and corrupted lines filled in.

Thus MVP allows the user to go directly from high
level image processing goals to an executable image pro-
cessing program. By insulating the user from many of
the details of image processing,productivity is enhanced.
The user can consider more directly the processing goals
relevant to the end science analysis of the image, rather
than being bogged down in the details such as file format,
normalizing images, etc.

MVP does not always fully automate this planetary
imaging task. In typical usage, the analyst receives a
request, determines which goals are required to fill the
request, and runs MVP to generate a VICAR script. The
analyst then runs this script and then visually inspects the
produced image(s) to verify that the script has properly
satisfied the request. In most cases, upon inspection,
the analyst determines that some parameters need to be
modified subjectively or goals reconsidered in context.
This process typically continues several iterations until
the analyst is satisfied with the image product.

Analysts estimate that MVP reduces effort to generate
an initial PDF for an expert analyst from 1/2 a day to 15
minutes and reduces the effort for a novice analyst from
several days to 1 hour- representing over an order of
magnitude in speedup. The analysts also judged that the
quality of the PDFs produced using MVP are comparable
to the quality of completely manually derived PDFs.

3Image navigation is the process of determining the matrix
transformation to map from the 2-dimensional (line, sample)
coordinate space of an image to a 3-dimensional coordinate
space using information on the relative position of the imaging
device (spacecraft position) and a model of the target being
imaged (e.g., the planetary body).



Automating SAR Processing
ASIP automates synthetic aperture radar (SAR) image
processing based on user request and a knowledge-base
model of SAR image processing using AI automated
planning techniques. ASIP enables construction of an
aerodynamic roughness image/map (z0 map) from raw
SAR data - thus enabling studies of Aeolian processes.

The aerodynamic roughness length (z0) is the height
above a surface at which a wind profile assumes zero
velocity. z0 is an important parameter in studies of
atmospheric circulation and aeolian sediment transport
(in laymans terms: wind patterns, wind erosion pat-
terns, and sand/soil drift caused by wind) (Greeley87;
Greeley91). Estimating z0 with radar is important be-
cause is enables large areas to be mapped quickly to study
aeolian processes, as opposed to the slow painstaking
process of manually taking field measurements(Blum-
berg95). The final science product is a VICAR image
called a z0 map that the scientists use to study the aeolian
processes.

ASIP is an end-to-end image processing system au-
tomating data abstraction, decompression, and (radar)
image processing sub-systems, and integrates a num-
ber of SAR and z0 image processing sub-systems. Us-
ing a knowledge base of SAR processing actions and
a general-purpose planning engine, ASIP reasons about
the parameter and sub-system constraints and require-
ments: extracting needed parameters from image for-
mat and header files as appropriate (freeing the user
from these issues). These parameters, in conjunction
with the knowledge-base of SAR processing steps, and
a minimal set of required user inputs (entered through
a graphical user interface (GUI)), are then used to de-
termine the processing plan. ASIP represents a number
of processing constraints (e.g., that only some subset of
all possible combinations of polarizations are legal as
dependent on the input data). ASIP also represents im-
age processing knowledge about how to use polarization
and frequency band information to compute parameters
used for later processing of backscatter to aerodynamic
roughness length conversion - thus freeing the user from
having to understand these processes.

Figure 5 shows an aerodynamic roughness length map
of a site near Death Valley,California generated using the
ASIP system (the map uses the L band (24 cm) SAR with
HV polarization). Each of the greyscale bands indicated
signifies a different approximate aerodynamic roughness
length. This map is then used to study aeolian processes
at the Death Valley site.

Since the ASIP system has been fielded, it has proven
to be very useful in the use of generating aerodynamic
roughness maps with three major benefits. First, ASIP
has enabled a 10 fold reduction in the number of manual
inputs required to produce an aerodynamic roughness
map. Second, ASIP has enabled a 30% reduction in
CPU processing time to produce such a map (by pro-
ducing more efficient plans). Third, and most signifi-
cantly ASIP has enabled scientists to process their own
data (previously programming staff were required). By

Figure 5: Aerodynamic Roughness Length Map Pro-
duced Using ASIP

enabling scientists to directly manipulate that data and
reducing processing overhead and turnaround, science is
directly enhanced.

Conclusions
This paper has described knowledge-based reconfigura-
tion of data analysis software using AI planning tech-
niques. This represents an important area where AI
planning can significantly enhance KDD processes. As
evidence of this potential, we described two fielded plan-
ning systems that enhance KDD: the MVP system,which
automates image processing to support Galileo image
data science analysis; and the ASIP system which au-
tomates production of aerodynamic roughness maps to
support geological science analysis.
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